МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ «ЦЕНТР ДЕТСКОГО ТВОРЧЕСТВА им. К.Х.ПАГИЕВА» АЛАГИРСКОГО РАЙОНА РСО-АЛАНИЯ

Принята на заседании Методического совета от « $\frac{29}{3}$ » $\frac{08}{3}$ $\frac{20}{3}$ г. Протокол № $\frac{1}{3}$

Дополнительная общеобразовательная общеразвивающая программа «Робототехника»

Направленность: техническая Возраст обучающихся – 9 – 17 лет Срок реализации – 2 года

Составитель: Хасигова Аида Сергеевна педагог дополнительного образования

Оглавление

І.Комплекс основных характеристик программ

1.Пояснительная записка

Перечень нормативных документов

Направленность программы

Актуальность и новизна

Педагогическая целесообразность

Отличительные особенности

Адресат программы

Форма организации образовательного процесса

Объем и срок реализации программы

Режим занятий

2.Цель и задачи программы

3. Содержание программы

Учебный план

Содержание учебного плана

4.Планируемые результаты

П.Комплекс организационно-педагогических условий

1.Календарный учебный график

2.Условия реализации программы

Материально – техническое обеспечение программы

Методическое обеспечение программы

Кадровое обеспечение программы

3.Оценочные материалы

4.Список литературы

Приложения

Приложение 1. Форма фиксации результатов

І.Комплекс основных характеристик программы

1.Пояснительная записка

Дополнительная общеобразовательная общеразвивающая программа «**Робототехника**» составлена в соответствии с нормативными документами:

- Федеральный закон от 29 декабря 2012 г. №273-ФЗ «Об образовании в Российской Федерации»;
- Приказ Министерства просвещения Российской Федерации от 09 ноября 2018 г. №196 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- СанПиН 2.4.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления» (утверждено постановлением Главного государственного санитарного врача РФ от 28.09.2020 № 28);
- Закон от 27 декабря 2013 г. № 61- РЗ «Об образовании в Республике Северная Осетия-Алания»;
- с учетом положений Концепции развития дополнительного образования детей (утверждена Распоряжением Правительства РФ от 4 сентября 2014 г. № 1726-р) и методических рекомендаций по проектированию дополнительных общеразвивающих программ (включая разноуровневые программы) (Приложение к письму Департамента государственной политики в сфере воспитания детей и молодежи Министерства образования и науки РФ от 18.11.2015 №09-3242).

Направленность программы – техническая.

Уровень программы – базовый.

Актуальность программы определяется востребованностью развития данного направления деятельности современным обществом.

Программа позволяет обучающимся ознакомиться со многими интересными вопросами математики, информатики и робототехники, выходящими за рамки школьной программы, расширить целостное представление о проблеме данной науки. Связь математики и информатики, а также наглядные примеры робототехники закрепят интерес детей к познавательной деятельности, будут способствовать развитию мыслительных операций и общему интеллектуальному развитию.

Не менее важным фактором реализации данной программы является стремление развить у обучающихся умений самостоятельно работать, думать, решать творческие задачи, а также совершенствовать навыки аргументации собственной позиции по определенному вопросу.

Педагогическая целесообразность программы заключается в том, что она способствует развитию познавательных интересов детей и творческого мышления, повышению интереса к исследовательской работе. Программа построена "от простого к сложному". Она имеет практическую

направленность, так как получение учащимися знаний в области информационных технологий является составным элементом общей информационной культуры современного человека, что позволяет многим обучающимся развить в себе способности творческого самовыражения, заняться интересным и полезным делом и даже найти своё место в жизни.

Отличительной особенностью данной программы является нацеленность на конечный результат, т.е. обучающийся создает не просто внешнюю модель робота, дорисовывая в своем воображении его возможности. Ребенок создает действующее устройство, которое решает поставленную задачу.

Программа плотностью связана с массовыми мероприятиями в научнотехнической сфере для детей (турнирами, состязаниями, конференциями).

Адресат программы: программа адресована детям 9-17 лет. Количество обучающихся в группах 10-15 человек.

Формы организации образовательного процесса: очная с применением дистанционных образовательных технологий.

Объем и срок реализации программы: 272 часа (2 года).

Программа рассчитана на 2 года обучения. Общая продолжительность обучения составляет 272.

1 года обучения: 136 учебных часа в год.

2 года обучения: 136 учебных часа в год.

Режим занятий: 2 раза в неделю по 2ак.ч. 1 год обучения

2 раза в неделю по 2 ак.ч. 2 год обучения

Виды и периодичность контроля: промежуточный (устный опрос, практические задания) и итоговый (смотр знаний, умений и навыков).

Сведения о проведении и результатах промежуточной и итоговой аттестации фиксируются в протоколах (**Приложение 1**).

2.Цель и задачи программы

Цель: Обучение основам электроники и программирования на базе микрокомпьютера Lego EV3, а также подготовка обучающихся к участию в олимпиадах по робототехнике.

Задачи программы:

- обучить алгоритму конструирования и сбора механических устройств;
- сформировать и улучшить знания и умения у детей в области информационной культуры (самостоятельный поиск, анализ и использование информации из интернета);
- сформировать умения находить, готовить, передавать, систематизировать и принимать информацию с использованием компьютера;

- обучить правильно выбирать источники информации в соответствии с учебной задачей и реальной жизненной ситуацией;
- расширить знания детей в образовательных областях физики и робототехники;
- развивать интеллектуальные, творческие способности воспитанников;
- развивать умение аргументировать собственную точку зрения;
- сформировать логическое мышление;
- воспитать у обучающихся понимание необходимости саморазвития и самообразования как залога дальнейшего жизненного успеха.

3.СОДЕРЖАНИЕ ПРОГРАММЫ

Учебный план первого года обучения

№	Название разделов, тем	Колич	ество час	СОВ	Формы
п/п		Всего	Теория	Практика	аттестации/ контроля
1.	Введение в	8	6	2	
1.1.	робототехнику Виды роботов	4	4	0	Собеседование
1.2.	Правила обращения с роботами	4	2	2	Опрос
2.	Знакомство с роботами LEGO MINDSTORMS EV3 EDU	17	6	11	
2.1.	Конструктор LEGO MINDSTORMS EV3	2	0	2	Выполнение практического задания
2.2.	Модуль EV3.	8	4	4	Выполнение практического задания
2.3.	Сервомоторы EV3	4	2	2	Выполнение практического задания
2.4.	Сборка и программирование роботов	3	0	3	Выполнение практической работы
3.	Датчики LEGO MINDSTORMS EV3 EDU и их параметры	30	10	20	

3.1.	Датчик касания	5	2	3	Решение задач
3.2.	Датчик цвета	5	2	3	Решение задач
3.3.	Датчик расстояния	5	2	3	Решение задач
3.4.	Датчик приближения	5	2	3	Решение задач
3.5.	Подключение датчиков и моторов	5	2	3	Выполнение практического задания
3.6.	Проверочная работа	5	0	5	Решение тестов. Выполнение практической работы
4.	Основы	27	13	14	
	программирования и				
4.1.	компьютерной логики Среда программирования модуля	4	2	2	Выполнение практического задания
4.2.	Методы принятия решений роботом	3	1	2	Опрос
4.3.	Программное обеспечение EV3	4	2	2	Решение задач
4.4.	Программные блоки и палитры программирования	4	2	2	Выполнение практического задания
4.5.	Движение по кривой	4	2	2	Решение задач
4.6.	Движение с остановкой на черной линии	4	2	2	Решение задач
4.7.	Программирование модулей	4	2	2	Соревнование роботов на тестовом поле
5.	Практикум по сборке роботизированных систем	26	0	26	
5.1.	Распознавание цветов	2	0	2	Выполнение практического задания
5.2.	Сканирование местности	2	0	2	Выполнение практического задания
5.3.	Подъемный кран. Счетчик оборотов	2	0	2	Выполнение практического задания

5.4.	Управление роботом с помощью внешних воздействий	4	0	4	Выполнение практического задания
5.5.	Движение по замкнутой траектории	4	0	4	Решение задач
5.6.	Использование нескольких видов датчиков в роботах	4	0	4	Выполнение практического задания
5.7.	Ограниченное движение	4	0	4	Решение задач
5.8.	Проверочная работа	4	0	4	Решение тестов. Выполнение практической работы
					paoorbi
6.	Проектные работы и соревнования	26	2	24	расоты
6. 6.1.	Проектные работы и соревнования Повторение и тестирование полученных знаний	26 8	2	6	Выполнение практической работы
	соревнования Повторение и тестирование полученных		_		Выполнение практической
6.1.	соревнования Повторение и тестирование полученных знаний Конструирование и программирование собственной модели	8	2	6	Выполнение практической работы Выполнение практической
6.1.	соревнования Повторение и тестирование полученных знаний Конструирование и программирование собственной модели робота Соревнование роботов на	8	2	8	Выполнение практической работы Выполнение практической работы

Содержание учебного плана первого года обучения

Раздел 1. Введение в робототехнику

Тема 1.1. Виды роботов

<u>Теория:</u> Инструктаж по технике безопасности на занятиях. Собеседование с целью выяснения возможности детей для занятия данным видом деятельности. Роботы. Виды роботов. Значение роботов в жизни человека. Основные направления применения роботов. Искусственный интеллект. Правила работы с конструктором LEGO.

Тема 1.2. Правила обращения с роботами <u>Теория:</u> Правила техники безопасности при работе с роботами-конструкторами. Правила обращения с роботами. Управление роботами. Методы общения с роботом.

Раздел 2. Знакомство с роботами LEGO MINDSTORMS EV3 EDU Тема 2.1. Конструктор LEGO MINDSTORMS EV3

<u>Теория:</u> Визуальные языки программирования, их основное назначение и возможности. Команды управления роботами. Среда программирования модуля, основные блоки.

<u>Практика:</u> Основные механические детали конструктора, их название и назначение.

Тема 2.2. Модуль EV3

<u>Теория:</u> Модуль EV3. Обзор, экран, кнопки управления модулем, индикатор состояния, порты. Установка батарей, способы экономии энергии. Включение модуля EV3.

Практика: Запись программы и запуск ее на выполнение.

Тема 2.3. Сервомоторы EV3

<u>Теория:</u> Сервомоторы EV3, сравнение моторов. Мощность и точность мотора. Механика механизмов и машин. Виды соединений и передач и их свойства.

Тема 2.4. Сборка и программирование роботов Практика:

Сборка роботов. Сборка модели робота по инструкции.

Программирование движения вперед по прямой траектории.

Расчет числа оборотов колеса для прохождения заданного расстояния.

Раздел 3. Датчики LEGO MINDSTORMS EV3 EDU и их параметры

Тема 3.1. Датчик касания

<u>Теория:</u> Датчики. Датчик касания. Устройство датчика.

Практика: Решение задач на движение с использованием датчика касания.

Тема 3.2. Датчик цвета

Теория: Датчик цвета, режимы работы датчика.

Практика: Решение задач на движение с использованием датчика цвета. Тема

3.3. Датчик расстояния

<u>Теория:</u> Ультразвуковой датчик.

Практика: Решение задач на движение с использованием датчика расстояния.

Тема 3.4. Датчик приближения

<u>Теория:</u> Гироскопический датчик. Инфракрасный датчик, режим приближения, режим маяка.

<u>Практика</u>: Решение задач на движение с использованием датчика приближения.

Тема 3.5. Подключение датчиков и моторов

<u>Теория:</u> Интерфейс модуля EV3. Приложения модуля.

Представление порта.

Практика: Подключение датчиков и моторов. Управление мотором.

Тема 3.6. Проверочная работа

<u>Практика:</u> Проверочная работа по темам разделов «Знакомство с роботами LEGO MINDSTORMS», «Датчики

LEGO и их параметры».

Раздел 4. Основы программирования и компьютерной логики

Тема 4.1. Среда программирования модуля <u>Теория:</u> Среда

программирования модуля.

<u>Практика:</u> Создание программы. Удаление блоков. Выполнение программы. Сохранение и открытие программы.

Тема 4.2. Методы принятия решений роботом Теория:

Счетчик касаний. Ветвление по датчикам. Методы принятия решений роботом. Модели поведения при разнообразных ситуациях.

Тема 4.3. Программное обеспечение EV3. Среда LABVIEW

<u>Теория:</u> Программное обеспечение EV3. Среда LABVIEW. Основное окно. Свойства и структура проекта.

<u>Практика:</u> Решение задач на движение вдоль сторон квадрата. Использование циклов при решении задач на движение.

Тема 4.4. Программные блоки и палитры программирования

<u>Теория:</u> Программные блоки и палитры программирования.

Страница аппаратных средств. Редактор контента. Инструменты.

Практика: Устранение неполадок. Перезапуск модуля.

Тема 4.5. Движение по кривой

<u>Практика:</u> Решение задач на движение по кривой. Независимое управление моторами. Поворот на заданное число градусов. Расчет угла поворота.

Тема 4.6. Движение с остановкой на черной линии

Теория: Использование нижнего датчика освещенности.

Практика: Решение задач на движение с остановкой на черной линии.

Решение задач на движение вдоль линии. Калибровка датчика освещенности.

Тема 4.7. Программирование модулей Практика:

Программирование модулей. Решение задач на прохождение по полю из клеток. Соревнование роботов на тестовом поле.

Раздел 5. Практикум по сборке роботизированных систем

Тема 5.1. Распознавание цветов

<u>Теория:</u> Использование конструктора Lego в качестве цифровой лаборатории. <u>Практика:</u> Измерение освещенности. Определение цветов. Распознавание цветов.

Тема 5.2. Сканирование местности <u>Практика:</u> Измерение

расстояний до объектов. Сканирование местности.

Тема 5.3. Подъемный кран. Счетчик оборотов <u>Практика:</u>

Сила. Плечо силы. Подъемный кран. Счетчик оборотов.

Скорость вращения сервомотора. Мощность.

Тема 5.4. Управление роботом с помощью внешних воздействий

<u>Практика:</u> Управление роботом с помощью внешних воздействий. Реакция робота на звук, цвет, касание. Таймер.

Тема 5.5. Движение по замкнутой траектории Практика:

Движение по замкнутой траектории. Решение задач на криволинейное движение.

Тема 5.6. Использование нескольких видов датчиков в роботах <u>Практика:</u>

Конструирование моделей роботов для решения задач с использованием нескольких видов датчиков.

Тема 5.7. Ограниченное движение

Практика: Решение задач на выход из лабиринта.

Ограниченное движение.

Тема 5.8. Проверочная работа <u>Практика:</u> Проверочная работа по темам разделов «Основы программирования и компьютерной логики», «Практикум по сборке

роботизированных систем».

Раздел 6. Проектные работы и соревнования

Тема 6.1. Правила соревнований Теория: Работа над

проектами «Движение по заданной траектории», «Кегельринг».

Правила соревнований.

Тема 6.2. Конструирование и программирование собственной модели робота

Практика: Конструирование собственной модели робота.

Программирование и испытание собственной модели робота.

Тема 6.3. Соревнование роботов на тестовом поле

Практика: Соревнование роботов на тестовом поле.

Тема 6.4. Защита проекта «Мой уникальный робот»

Практика: Подведение итогов работы учащихся. Подготовка презентаций.

Защита проекта «Мой уникальный робот».

УЧЕБНЫЙ ПЛАН 2-ГОЛА ОБУЧЕНИЯ

			п 2-1 ОДА ОБ	7 11211111	/1
№ п/п	Разделы и темы	Количест	во часов		
		теория	практика	всего	Формы аттестации/контроля
	1. Вводное	занятие (2ч	ı.)		
1.1	Правила поведения и ТБ в кабинете «LEGO - роботы» и при работе с конструкторами «LEGO».	1	1	2	Беседа - диалог
2.	Использование наборов ког «LEGOMIND			CDO» и	
2.1	Правила работы с конструктором LEGO Mindstorms NXT 2.0. Основные детали. Знакомство с NXT 2.0. Спецификация. Кнопки управления.	2	4	6	Игровой тест
2.2	Сборка роботов по готовым схемам, чертежам.	2	10	12	Практическая работа

	Сервомоторы. Назначение портов NXT 2.0.				
2.3	Знакомство с датчиками.	1	8	9	Практическая работа
2.4	Роботы собственной	1	8	9	Самостоятельная работа
2.1	конструкции. Оптимизация	•	· ·		Симостоятельная риссти
	собранной конструкции				
	(рациональная компоновка,				
	облегчение ее, за счет				
	уменьшения числа				
	деталей).				
2.5	Оптимизация собранной	1	1	2	Самостоятельная работа
	конструкции				с творческим заданием
	(рациональная компоновка,				
	облегчение ее, за счет				
	уменьшения числа				
	деталей).				
	3. Программы «ROBOI				
3.1	Знакомство со средой	6	6	12	Практическая работа
	программирования NXT-G.				
	Окно инструментов.				
	Команды NXT-G. Работа с				
	пиктограммами,				
3.2	соединение команд.	6	10	16	Полужения побет
3.2	Составление линейных	0	10	16	Практическая работа
	программ, передача и запуск программы.				
3.3	Составление программы с	4	10	14	Практическая работа
3.3	использованием	-	10	17	практическая работа
	параметров, программы с				
	циклом. Условие,				
	условный переход.				
	Датчики и их параметры.				
		Конструкто	рский этап	(20ч.)	
4.1	Особенности составления	2	6	8	Тест-опрос
	технологической схемы	_	· ·		reer empee
	сборки, различных				
	моделей роботов.				
4.2	Разработка различных	6	6	12	Самостоятельная работа
	вариантов схем сборки				-
	роботов				
	2.	Технологич	неский этап ((24ч.)	
5.1	Конструктивные	4	4	8	Практическая работа
	особенности различных				1
	моделей роботов.				
	Методика выбора				
	масштаба моделирования.				
5.2	Обзор существующих схем	6	6	12	Практическая работа
	сборки моделей: -				
	компоновочные схемы				

	различных роботов со специальными элементами конструкторов «LEGO-MINDSTORMS»					
5.3	Создание собственных моделей.	1	1	2	Защита творческих проектов	
	3. Подведение итогов. (4 часа)					
6.1	Подведение итогов работы за год. Заключительное занятие	2	1	3	Выставка	
Итого:		46	90	136		

V. СОДЕРЖАНИЕ ПРОГРАММЫ II ГОДА ОБУЧЕНИЯ

1.Ввеление

Теория: задачи учебной группы. Программа и план занятий на предстоящий год. Организационные вопросы. Правила по технике безопасности. Транспортные средства. Определение направлений проектной деятельности с учетом «метапредметной» деятельности.

Практическая работа: Демонстрация образцов моделей.

Форма организации занятия: групповая.

Формы, методы и приёмы обучения: беседа, словесно-иллюстративный, объяснение, инструктаж.

Дидактическое обеспечение: выставочные экспонаты робототехнических изделий.

Методы контроля: собеседование, опрос, анализ.

Материалы и оборудование: основные детали конструктора LEGO, мультимедийный проектор, видеоаппаратура.

2.Использование наборов конструкторов «LEGO-WEDO» и «LEGOMINDSTORMS»

Теория: Правила работы с литературой и различными источниками информации.

Практическая работа: Работа с литературой, в Интернете. Мир машин и механизмов; повышение производительности и качества; минимизация стоимости операций;

Форма организации занятия: групповая.

Формы, методы и приемы обучения: лекция, беседа, индивидуальная работа, работа в группе, решение проблемы, практическая работа.

Дидактическое обеспечение: выставочные экспонаты робототехнических изделий.

Методы и формы контроля: собеседование, опрос, тест-игра, анализ

Материалы и оборудование: основные детали конструктора LEGO MINDSTORMS, видеоаппаратура.

3. Программы «ROBOLAB» и «NXT»

Теория: Знакомство с конструкторами. Специальные элементы, содержащиеся в конструкторах. Правила безопасной работы специальными элементами. Управление моделями (инфракрасный пульт управления). Программа «ROBOLAB»: освоение палитры функций, моторы, модификаторы, структуры, ожидания, контейнеры, коммуникации и др. Знакомство с микрокомпьютерами NXT. Освоение нескольких управляющих программ. Множественная обратная связь. Задание роботу инструкции поведения (разработка алгоритма). ИК приемо-передатчик. Датчики различных входных сигналов.

Практическая работа: Загрузка программ в микрокомпьютер; сохранение программ. Возможности использования конструкторов «LEGOMINSTORMS» для проектирования моделей роботов. Работа с иллюстративным материалом и деталями конструктора.

Форма организации занятий: индивидуальная, групповая

Формы, методы и приемы обучения: лекция, беседа, работа в группе, индивидуальная работа, решение проблемы, практическая работа.

Дидактическое обеспечение: установочный диск с программой для «NXT».

Форма подведения итогов по теме: практическая работа по созданию собственной программы

Методы и формы контроля: собеседование, опрос, тест-игра, анализ.

Материалы и оборудование: основные детали конструктора LEGO, мультимедийный проектор, ПК.

4. Конструкторский этап

Теория: Способы передачи вращательного движения (ременная и зубчатая передачи, передача вращения в перпендикулярную плоскость, анализ работы часового механизма). Преобразование типов движения.

Практическая работа: Разработка различных вариантов выполнения проектов: эскизы, наброски, технические рисунки и схемы различных вариантов, определение их достоинства и недостатков.

Форма организации занятий: работа в парах.

Формы, методы и приемы обучения: лекция, беседа, работа в группе, индивидуальная работа, решение проблемы, практическая работа.

Дидактическое обеспечение: установочный диск с программой для «NXT».

Форма подведения итогов по теме: викторина в POWER POINT «Виды зубчатых передач».

Материалы и оборудование: основные детали конструктора LEGO мультимедийный проектор, видеоаппаратура, ПК.

Методы и формы контроля: собеседование, опрос, тест-игра, анализ

5. Технологический этап

Теория: Особенности составления технологической схемы сборки модели. Конструктивные особенности различных моделей военных сооружений и механизмов. Методика выбора масштаба моделирования. Виды подвижных и неподвижных соединений. Способы и приемы соединения деталей. Комбинированные соединения. Рациональная последовательность операций по сборке деталей. Обзор существующих схем сборки моделей: -компоновочные схемы различных моделей-копий военных машин, автомобилей, архитектурных сооружений, механизмов со специальными элементами конструкторов.

Практическая работа: Подбор необходимых материалов. Организация рабочего места. Выполнение запланированных технологических операций. Сборка моделей из базовых деталей конструкторов и специальных элементов «LEGO-MINSTORMS»: -моделирование рычагов и подвижных элементов; -механизм поворота колес транспортного средства (творческое исполнение); -сборка модели подъемного или корабельного крана (закрепление понятий - блоки, шкивы, подъемные механизмы);

Форма организации занятий: работа в парах

Формы, методы и приемы обучения: лекция, беседа, работа в группе, индивидуальная работа, решение проблемы, практическая работа.

Дидактическое обеспечение: установочный диск с программой для «NXT».

Форма подведения итогов по теме: викторина в POWER POINT «Виды зубчатых передач»

Методы и формы контроля: собеседование, опрос, тест-игра, анализ.

Материалы и оборудование: наборы «LEGO-MINSTORMS», батарейный блоки, аккумуляторы, интерактивная доска.

6.Подведение итогов

Теория: закрепление изученного материала. Подведение итогов за год. Перспективы работы на следующий год.

Формы занятий: самостоятельная работа, выставка, практическая работа.

4.Планируемые результаты

В процессе освоения программы, обучающиеся будут иметь возможность приобрести опыт освоения универсальных компетенций в творческой и познавательной деятельности.

В результате освоения Программы обучающиеся будут знать:

- основные понятия робототехники, основные технические термины связанные с процессами конструирования и программирования роботов;
- общее устройство и принципы действия роботов;
- общую методику расчета основных кинематических схем;
- основные принципы компьютерного управления, назначение и принципы работы цветового, ультразвукового датчика, датчика касания, различных исполнительных устройств;
- правила техники безопасности при работе в кабинете, оснащенном электрооборудованием.

В результате освоения программы обучающиеся будут уметь:

- собирать простейшие модели с использованием EV3;
- самостоятельно проектировать и собирать из готовых деталей манипуляторы и роботов различного назначения;
- использовать для программирования микрокомпьютер EV3 (программировать на дисплее EV3);
- владеть основными навыками работы в визуальной среде программирования, программировать собранные конструкции под задачи начального уровня сложности;
- разрабатывать и записывать в визуальной среде программирования типовые команды управления роботом;
- подбирать необходимые датчики и исполнительные устройства, собирать простейшие устройства с одним или несколькими датчиками, собирать и отлаживать конструкции базовых роботов;
- правильно выбирать вид передачи механического воздействия для различных технических ситуаций, собирать действующие модели роботов, а также их основные узлы и системы начального уровня сложности.

По окончании обучения по программе у обучающихся будут сформированы:

- навыки в области робототехники;
- эстетическое восприятие и творческое воображение;
- навыки работы в группе, культура общения.

Кадровое обеспечение

Уровень образования педагога: среднее профессиональное или высшее образование (в том числе по направлениям, соответствующим направлениям дополнительных общеобразовательных программ, реализуемых организацией, осуществляющей образовательную деятельность), отвечающее квалификационным требованиям, указанным в квалификационных справочниках и (или) профессиональном стандарте.

3. Оценочные материалы

Оценочные материалы включают в себя: тест, критерии оценки результатов проектной деятельности обучающихся.

Критерии оценок и шкалы

- *Отпично*: 95 % 100 % правильных ответов, глубокие познания в освоенном материале.
- *Хорошо*: 75 % 94 % правильных ответов, материал освоен полностью без существенных ошибок.
- *Удовлетворительно*: 51 % 74 % правильных ответов, материал освоен не полностью, имеются значительные пробелы в знаниях.
- *Неудовлетворительно*: менее 50 % правильных ответов, материал не освоен, знания ниже базового уровня.

Оценка защиты проекта/кейса

Критерии оценки проектов.

По каждому пункту оценивается уровень компетенций:

- Низкий уровень (1 балл);
- Средний уровень (2-3 балла);
- Высокий уровень (4 балла).

№ п/п	Критерий	Значение
1	Оригинальность и	Проект уникален и демонстрирует
	качество решения	творческое мышление участников, хорошо
		продуман и имеет концепцию.
2	Зрелищность	Проект имел восторженные отзывы,
		смог заинтересовать на его дальнейшее
		изучение.
3	Сложность	Трудоемкость, многообразие используемых
		функций.
4	Понимание	Команда продемонстрировала свою
	технической части	компетентность, сумела четко и ясно
		объяснить, как работает их проект.
5	Инженерные решения	В конструкции проекта использовались
		хорошие инженерные концепции.
6	Эстетичность	Проект имеет хороший внешний вид.
		Команда сделала все возможное, чтобы
		проект выглядел профессионально.
7	Навыки общения и	Участники смогли рассказать, о чем их
	аргументации	проект и объяснить, как он работает,
		почему и для чего они решили его сделать.
8	Скорость мышления	Участники команды с легкостью ответили
		на вопросы, касающиеся их проекта.
9	Сплоченность	Команда продемонстрировала, что все
	коллектива	участники коллектива сыграли важную
		роль в создании и презентации проекта.

И.Комплекс организационно – педагогических условий

1. Календарный учебный график

Режим организации занятий по данной дополнительной общеобразовательной программе определяется календарным учебным графиком и соответствует нормам, утвержденным СанПиН 2.4.3648-20 «Санитарно — эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления» (утверждено постановлением Главного государственного санитарного врача РФ от 28.09.2020 № 28).

Года обучения	1 год обучения	2 год обучения	
Начало учебного		19.09.2022 года	
года	17.07.2022 ГОДа		
Окончание учебного года	31.05.2023 года		
Количество учебных недель		40 недель	
Количество часов в год	136	136	
Продолжительность			
занятия	40	40	
(академический	40	40	
час)			
Периодичность	раз по	раз по	
занятий			
Объем и срок			
освоения		272 часа, 2 года	
программы			
Режим занятий	В соответствии с расписанием		
Каникулы зимние	31.12.2022	2 г. – 10.01.2023 г.	

2. Условия реализации программы Материально-техническое обеспечение

Продуктивность работы во многом зависит от качества материально — технического оснащения процесса. Программа реализуется в учебном кабинете образовательной организации с применением технических средств обучения, таких как:

- технические средства обучения (компьютер, интерактивная доска).

- дополнительные наборы запчастей (шестеренки, балки, крепления, таблетки).
- основные наборы Lego Mindstorms Education EV3 (Микрокомпьютер. Двигатели, провода, балки, колёса и т.д.).
- наборы оптического зрения (датчики цвета, звука, расстояния, инфракрасные).

Методическое обеспечение программы

При реализации программы в учебном процессе используются методические пособия, дидактические материалы, журналы и книги, материалы на электронных носителях.

Занятия построены на принципах обучения:

- развивающего и воспитывающего характера,
- доступности,
- наглядности,
- целенаправленности,
- индивидуальности,
- результативности.

В работе используются методы обучения:

- вербальный (беседа, рассказ, лекция, сообщение);
- наглядный (использование мультимедийных устройств, личный показ педагога, подборки фоторабот, книги, журналы, альбомы и т.д.);
 - практический
 - самостоятельной работы.

Усвоение материала контролируется при помощи тестирования, выполнения практических заданий и творческих проектов.

Итоговое (заключительное) занятие объединения проводится в форме защиты проектов обучающихся.

4.СПИСОК ЛИТЕРАТУРЫ

Литература для педагога

- 1. Робототехника для детей и родителей. С.А.Филиппов. СПб: Наука, 2014.
- 2. Санкт-Петербургские олимпиады по кибернетике М.С.Ананьевский, Г.И.Болтунов, Ю.Е.Зайцев, А.С.Матвеев, А.Л.Фрадков, В.В.Шиегин. Под ред. А.Л.Фрадкова, М.С.Ананьевского. СПб.: Наука, 2012.
- 3. Журнал «Компьютерные инструменты в школе», подборка статей за 2012 г. «Основы робототехники на базе конструктора LegoMindstorms NXT».
- 4. The LEGO MINDSTORMS NXT Idea Book. Design, Invent, and Build by MartijnBoogaarts, Rob Torok, Jonathan Daudelin, et al. SanFrancisco: NoStarchPress, 2011.
- 5. LEGO Technic Tora no Maki, ISOGAWA Yoshihito, Version 1.00 Isogawa Studio, Inc., 2015, http://www.isogawastudio.co.jp/legostudio/toranomaki/en/.
- 6. CONSTRUCTOPEDIA NXT Kit 9797, Beta Version 2.1, 2015, Center for Engineering Educational Outreach, Tufts University, http://www.legoengineering.com/library/doc_download/150-nxt-constructopedia-beta-21.html.

- 7. Lego Mindstorms NXT. The Mayan adventure. JamesFloydKelly. Apress, 2014.
- 8. Engineering with LEGO Bricks and ROBOLAB. Third edition. Eric Wang. College House Enterprises, LLC, 2013.
- 9. The Unofficial LEGO MINDSTORMS NXT Inventor's Guide. David J. Perdue. San Francisco: No Starch Press, 2015.
- 10.http://www.legoeducation.info/nxt/resources/building-guides/
- 11.http://www.legoengineering.com/

Литература для обучающихся и родителей:

- 1. Робототехника для детей и родителей. С.А.Филиппов. СПб: Наука, 2010.
- 2. Первый шаг в робототехнику. Копосов Д. Г. Практикум для 5-6 классов. Москва. БИНОМ. Лабораториязнаний. 2012.
- 3. А.Ф. Крайнев. Первое путешествие в царство машин. М., 2007г. -173с
- 4. <u>Джереми Блум Изучаем Arduino- инструменты и методы технического</u> волшебства (2015)
- 5. С чего начинаются роботы. О проекте Arduino для школьников. В.Н. Гололобов.
- 6. ArduinoCookbook, второе издание, автор MichaelMargolis. Москва. 2011.
- 7. Arduino, датчики и сети для связи устройств. Сергей Таранушенко. Санкт-Петербург. БВЧ-Петербург 2015г.

Φ_0	рма фиксации результатов		
Про	отокол результатов аттестации обуч	чающихся творческо	ого объединения
	20/20	учебный год	
	вание творческого объединения		
	О педагога		
Обі	цеобразовательная программа и ср	ок ее реализации	
	руппы		
	обучения		
	во обучающихся в группе		
	а проведения аттестации		
	ома проведения		
Фор	ома оценки результатов уровень (в	ысокий, средний, ни	зкий)
	Результаты ито	говой аттестации	
№	Фамилия имя ребенка	Форма аттестации (текущая, промежуточная, итоговая)	Результат аттестации
Nº	Фамилия имя ребенка	(текущая, промежуточная,	Результат аттестации
Nº	Фамилия имя ребенка	(текущая, промежуточная,	Результат аттестации
Nº	Фамилия имя ребенка	(текущая, промежуточная,	Результат аттестации
Все Из выс сре, низ	Фамилия имя ребенка его аттестовано обучают них по результатам аттестации: сокий уровень чел. дний уровень чел. кий уровень чел. ультаты аттестации	(текущая, промежуточная, итоговая) ЩИХСЯ.	Результат аттестации
Все Из выс сре, низ Рез	го аттестовано обучающих по результатам аттестации: сокий уровень чел. дний уровень чел. кий уровень чел.	(текущая, промежуточная, итоговая) щихся.	Результат аттестации